L _/ED-A632 926 CALIFORNIA UNIV LOS ANGELES DEPT OF MATHEMATICS F/6 12/1

by ON A BOUNDARY EXTRAPOLATION THEOREM BY KREISS.(U)
SEP 76 M GOLDBERG AF=AFOSR=- 30'4-6 76
UNCLASSIFIED AFOSR=TR=76-1182

END
DATE
‘IM} )




v

: Moshe Goldberg®
Department of Mathematics

University of California, Los Angeles

ABSTRACT. A hardly known and very important result of =
Kreiss is proven explicitly: Outflow boundary extrapolation PR

which complements stable dissipative schemes for linear e S
hyperbolic initial value problems, maintains stability. : r'f, ‘ \Q:i/
In view of this result, the Lax-Wendroff and the Gottlieb- . | N :

Turkel schemes are applied to a test problem; as expected ;
from the rate-of-convergence theory by Gustafsson, global [ * - S
order of accuracy is preserved if outflow boundary .
computations employ extrapolation of (1ocal) accuracy of
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l. Introduction

The initial value problem

(1.1) u =au; a>0, x>0, t>0; u(x,0) = £(x),

: is well posed in LE(Q,W), and requires no boundary conditions at

Q Moy

x = 0. Yet, it is impossible to approximate the solution of (1.1) by

a difference scheme, which is not right-sided, without specifying boundary

values at some points in a left neighborhood of x = 0.

In this paper we consider general two-sided dissipative schemes

which are stable for the pure Cauchy problem for -» < x <« ®. Our

main purpose is to provide a proof for the following apportant result
b

VALADIE 10 pra po-

which was stated by Kreiss in 1965 [4, Thm 5], but no detailed proof

We show that if the required boundary values are

IT ree s

has been published.
defined by extrapolation of arbitrary order of accuracy, the numerical

GOPY »
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algorithm remains stable.

Z This research was sponsored in part by the Air Force Office of
Scientific Research, Air Force System Command, USAF, under Grant No.

AFOSR-76-3046.
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Of course one may have instead of (1.1), the equation u, = au  with
a < 0, which defines a well posed initial value problem in the quarter
plane {x <0, t >0}, rather than in {x >0, t > 0}. However, by
employing the transformation x - -x it is clear that this problem goes
over to the previous one. Consequently, we would find that the process of
extrapolating to grid points at some right neighborhood of x = 0, is
stable.

To summarize, our aim is to show that by using a stable two-sided
dissipative scheme together with an outflow extrapolation, to approximate a
well posed initial value problem in the proper quarter plane, overall
stability is maintained. Again, since the cases a >0 and a <0 are
analogous, it suffices to prove stability for difference approximations of
(1.1), and the proof is given in Section 2.

The tool by which we carry out the analysis is Kreiss' stability theory
for dissipative finite difference approximations of mixed initial boundary
value problems. This theory is given in [5], and we assume that the
reader is familiar with this work.

In Section 3 we present numerical evidence to support the theoretical
results. We use two dissipative approximations: The well known centered
3-point Lax-Wendroff scheme, [7], and a centered 5-point scheme by Gottlieb
and Turkel, [2]. In particular, our computations verify that by using extra-
polation of local order of accuracy which equals the global order of accuracy
of the difference scheme, the global accuracy is preserved. The important
question of convergence rate for mixed initial boundary value problems is
discussed by Gustafsson, [3].

The computations reported in this work were done on the IBM 360
machine, at the Campus Computing Network of the University of California,

Los Angeles.




2, Stability analysis

In order to solve the inivial value problem (1.1) by a finite dif-
ference scheme let us introduce a mesh-size 4&x > 0, At > 0, such that
A = Ot/Ax = constant, and use the standard notation x, = v&x, v (t) =

v(x,,t). Now consider a dissipative consistent approximation to {1.1)

of the form »
(2.1) v(t +4t) = Qv (t), Vv=1,2... , : St
where
p j LI

(2.2} Q= X aJE y Ev, =V,

J=-r
and initial values are given by ﬂ
(2.3) vA0) = £ 5 V=1,2,60. .
Here the fixed coefficients a 5 depend on a and X, such that a_n. ap

do not vanish.

The assumption of dissipativity (in the sense of Kreiss) means that
there exist a constant § > 0 and a positive integer w, so that the
amplification factor

p
(2.4) -z aet,  rcec,

of the difference scheme, satisfies

(2.5) 18 <1 -8lel®, el<r.

Condition (2.5) guarantees, of course, the (strong) stability of the approxi-

mation, should it be applied to the pure initial value problem for -»< x < ®,




I

Our final assumption, as indicated in the introduction, is that the

scheme is two-sided, i.e., r >0, p> 0., In fact, having dissipativity,
i. our scheme must be two-sided if we simply require that the difference
| operator Q will be consistent with ut== au, for an arbitrary value of
a — positive or negative. This result is given in Corollary 1 of [1].

Since r > 0, it is evident that in order to apply the numerical

approximation to (1.1), we have to specify, at each time step, boundary
;? : values vh(t), Bb=0,-1,ec-,-r+1., We do this by means of extrapola-
. tion, utilizing the Lagrange interpolation polynomial of degree s - 1,

s > 1, which has accuracy of order s.

In order to comply with Kreiss' formulation in [5], we should use the

procedure
(2.6) v“(t) = Jg& cjuvj(t) > B =0,cee,-T+1 ,
where the Lagrange coefficients, cdu, depend on K4 and are given by
(2.7) o e W(xu) 5 B =0,e0e,or+l; J = 1l,ecc,8,
1 B x, - x‘1 X,
W(x) = (x-x) +eor (x-%g) .

i The fact that the cdu vary with 4 causes some numerical and theoretical
inconvenience which we eliminate as follows. Since there exists a unique
polynmomial of degree s -1 which coincides with a given function at s
given points,(2.6) is equivalent to extrapolating from vo(t),ooo,vs_l(t)
to vo(t), and then from vo(t),---,vs_l(t) to v_l(t), etc. That is,

(2.6) is equivalent to the fixed coefficient extrapolation algorithm

8
(2.8) Vu(t) = Jfl cjvu_’_d(t) ’ B = 0,0..,-1‘4-1 »
where
f W (x,)
(2.9) c S J=1y000,8,

J % (!“ - x“.’-d)w‘:(x“-pd)

S




Wu(X) =(x - xu+l)(x - xu+2) cee (x - xu+s) g B = 0,000,741 .

It is straightforward to verify that regardless of ¢

(2.10) cy = (“;)(-1)2”“l , 3=1L,08 .

So our boundary conditions are

0,"‘,-1‘+1 ’

S /s j+1
(2.2) v (t) - 3}31(3)(-1) ¥ag(t) 5 H

and we finally write them in the convenient form
£ j
(2.12) J?o(:j)(-l) Viey =0 B = 0peee,orl .
Now the approximation to (1.1) is well defined, where the error at the
boundary extrapolation is O(Ax°).

Next denote by H the space of all grid functions w defined for

v?

V> .r, which fulfill the boundary condition (2.12), and which satisfy
0
2
(2.13) ) lwvl Ax < o
V==2r+1

Upon defining inner product and norm by

©
- 2
(2'11") (u,v) = T u, v, Ax , ”W” b (W,W) >
V==2r+l1l
H becomes a Hilbert space.
According to these definitions we may present our difference approxi-

mations in the form
(2.15) v(t +At) =Gv(t), v(t),v(t +At) eH ,

where G 1is a linear bounded operator in H defined by (2.1) together
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wu(x) = (x - xuﬂ)(x - xu+2) coe (% - x“+s) g B o= 0,000 x4l ,
It is straightforward to verify that regardless of u
(2.10) = (j)(_l).i*‘l T

S0 our boundary conditions are

0,.00’-r+1 ’

e j+1
(2.11) v, () = J'fl(;)(-l) ij(t) s B

and we finally write them in the convenient form

8 s .'j
(2.12) X (J)(-l) Vypy =05 W= 0eee,orel .

Now the approximation to (1.1) is well defined, where the error at the
boundary extrapolation is O(Axs).

Next denote by H the space of all grid functions W defined for
V> -r, which fulfill the boundary condition (2.12), and which satisfy

(2.13) T lwvlgAx< w0
V==r+l

Upon defining inner product and norm by
" N !
(2.14) (u,v) = >2: u, v, Ax , ||w|| = (ww) ,
V==2+1
H Dbecomes a Hilbert space.
According to these definitions we may present our difference approxi-

mations in the form
(2.15) v(t + At) = Gv(t), v(t),v(t +At) e H ,

where G 1s a linear bounded operator in H defined by (2.1) together
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with (2.12).
We say that the algorithm in (2.15) is stable if there exists a

constant K, such that
(2.16) lv( )] < K||v(0)ll , vt = mAt, and v(0) e H .

The above description follows Kreiss' representation in [5], so all
the results of [5] hold, and we first rephrase the Main Theorem of [5] as

follows: The finite difference approximation is stable if the operater G

has no eigenvalues z with |z| >1, z #1, and if z =1 is not a

generalized eigenvalue of G.

The concept of a generalized eigenvalue is discussed in Section 1
of [5], and in the remainder of this section we shall show that for our
problem,the Main Theorem is satisfied.

In order to check whether a given 2z with Izl > 1 is an eigenvalue

of G, we consider the characteristic equation of the difference operator Q,

O .

LA
(2.17) det [ Y a.kt s 7
j=-r 9

By Lemma 2 of [5], equation (2.17) with z £ 1, |z| 21, has »+p

roots k; r of themwith 0< |k| <1 and p with |k| > 1. More-
over, according to the proof of Lemma 7 of [5], as z -1 (|z| >1, =z £1),
precisely one root k tends to 1, and this root approaches 1 from
inside the unit disc if and only if a < 0. In our case, the coefficient

a in (1.1) is positive, so no root k of (2.17) tends to 1 from inside
the unit disc. Hence, z =1 1is not a generalized eigenvalue of G, and
it  remains to verify that z with |z] >1, z #1, is not an ordinary

eigenvalue of G.

e S
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Suppose z with lzol >1, z, # 1, is an eigenvalue of G, with

a corresponding eigenvector g € H. That is, Gg = 2,8, or more specifi-

cally, due to the definition of G, g must satisfy the relations
(2.18) (Q - zo)gv =00 V =i, 2 0,

and the boundary conditions

s
s J
(2.19) T ({01, =0, B=0,-leee,orel.
3:0(3 H+J
Take the characteristic equation with z = ZO’ and let Ky

i=1,-+,q, be all its distinct roots which satisfy lxil <1, each

with multiplicity Vi We know that there are r such roots, so
(2.20) 2 ’yi =T e

The most general solution of the ordinary difference equation (2.18),

which belongs to H, is known to be

IY
& k-1 v
(2.21) 8y = 1?-:1 kfl G VR S V> -rdl

where the r coefficients 0o are arbitrary. We still have to verify

i,k
that the solution in (2.21) satisfies the boundary conditions (2.19). So,

we insert (2.21) into (2.19) and after a simple rearrangement we get

Y

8 208 ny k-1 u+j]
2.22 s (5)(-1 e PN
e 1§i kfi [jzb(d)( e A Al S

In (2.22) we have a homogeneous linear system of r equations for the r

unknowng O Denoting the coefficient matrix by E, it can be shown,

ik’
by elemeantary colummn operations, that E reduces to a generalized Vandermande.

Hence, det E is proportional to an expression of the form




O

E q P i S'Yi [ 'Y{YJ]
(2.23) [ I k. (1 -k.) } n (K; =K,
: i=1 A 4 Llsi<3sq . J !

where the are integers. Since k ~--,nq are distinct with

pi 1’
0 < Inil <1, we see that det E £ 0; thus the only solution to (2.22)
is the trivial one, namely Ui,k = 0. Consequently, g, of (2.21)
vanishes, which means that we have failed to construct a nontrivial eigen-
solution of (G - zOI)g = 0 that belongs to H. Hence, 2 is not an
eigenvalue of G, and Kreiss' Main Theorem assures stability.

We have proven the following result.

THEOREM (Kreiss, 1965). Let the initial value problem

u =au; a= const.; x(sig a) >0, t>0; u(x,0) = £(x),

be approximated by a dissipative, strongly-stable, two-sided scheme, which

is complemented by outflow extrapolation of arbitrary accuracy, at the

boundary x = 0. Then, the overall approximation is stable.

We conclude this section by demonstrating the cases r =1 and r = 2,
which cover all schemes of practical importance. In particular, r = 1,
r = 2, agree, respectively, with two schemes which we employ in
Section 3.

For r =1, we have to extrapolate only at one point, M = 0, and
the characteristic equation has only one root k inside the unit disc. So,

an eigensolution of (G - z)g =0, |z| >0, z #1, mst be of the form

(2.24) gm0k , V>0,
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and substituting this solution into the boundary condition (2.19), we

obtain the single equation

s 33
(2.25) [35% (?)(-1) K ] c=0,
Here
S
(2.26) aetE=E= T (§)(-19 -0 4o,
3=0

and stability follows.

When r = 2, we use at each time step, vl(t),°-',vs(t), to compute
vo(t); and then vo(t),---,vs_l(t), to determine v_l(t). Equation (2.17)
has now two roots Ki with 0 < ,Ki, < 1l, and we distinguish between two
possibilities. The first is K, = Ky = k, where

v v
(2.27) By~ Ok # 0 Vi, v>-1,

The insertion of (2.27) into (2.19) yields the system of two equations

i
o
-

s ‘
(2.28) .Z‘O (;)(-l)j[(’l + (n+3)0,] £ o b= 0yl .
J=

Writing (2.28) in the form of EO = 0, with o'= (o

1,62) being the transposed

unknown vector, we find that

(2.29) det E = -n-l(l - n)2s £0.

The second possibility is Ky # ke Here
v v i

2.30 = -
Gt pLa e - S el i

which we substitute into (2.19) to obtain

(2.31) jz:o (;)(-1)3 (clki"'u . oangﬂ*) AR W 1




The coefficient determinant is

% -1 - 2 2
(2.32) det E = Kllx21(1 - nl) (1 - K2) (nl - ne) £0,

and again, by the Main Theorem, stability follows.

s Numerical results

In this section we consider the initial value test-problem

(3.1) U =uo s Xl SE0LE G0, 00 = sin 2,
t X - -

whose analytic solution is

(3.2) u(x,t) = sin 27(x + t) .

We begin by writing down the second order accurate Lax-Wendroff

scheme (L - W), [7], which for the linear equation in (3.1), takes

the form
m+1 - m m
(3.3) NS J—!; Along o Ty v (mldt)
8p=1-25 a, =207+2), A=otfx,

We recall (e.g. [8, Chapter 12]), that in the above case (a = 1),
(3.4) Al

is a condition which assures dissipativity and strong stability.

Here, r = 1; hence, to approximate (3.1), we need to specify only

one boundary value, vg. Extrapolating via VT,-O',V:, we get, according




to (2.11), a boundary condition

S
m s j+l m
(3.5) Vg = j’fl(d)('l) vy »

which is of (local) accuracy of order s. By the theorem of Section 2,
the algorithm defined in (3.3) together with (3.5), remains stable, provided
(3.4) is satisfied.

For the numerical computations we set an artificial boundary at x = b,
b > 0, where we use values of the analytic solution. Nevertheless, we
restrict attention to results in the interval 0 < x <1, so we choose a
large enough b, in order to secure that during the integration period,
0 < t<1, there will be no interaction between the boundary at x = Db,
and the numerical solution at 0 < x < 1. In other words, errors due to

the right boundary, which propagate inward, never reach the region 0 < x < 1.

t=.5 t=1.
Ax s m ”e”(o,l) m le[ko’]:)
-05 2 20 2.75 - 2 !&0 5.57 = 2
.025 2 Lo 6.93-3 80 1.39 -2

.0125 2 80 1.72-3 160 3.46~3
.05 ) 20 5.63 = 2 40 7.03-2
.025 1 4o 1.98-2 80 2.23 -2

.0125 g 80 7.00 - 3 160 T4l <3

Table 1: L-W results with X =At/dx = 1/2,

m = t/At is the number of time steps;

o-n presents o+ 1072,
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The quantity llell in Table 1 is the H-norm of the error, restricted

(0,1)
to 0<x<1, i.e., in our case (r =1),

2 2 J 2
(3'6) "ep(o,l)= ”e(t)”(o,l) = vfofvv(t) = u(xv)t)] Ax) J = l/Ax .

The integer s 1indicates the order of extrapolation: s =1 and s = 2
mean constant and linear extrapolation, respectively. We realize that
all the results are stable. As expected, linear extrapolation maintains
the overall second order accuracy of the L-W scheme, while constant
extrapolation reduces the total accuracy.

Our second check relates to a centered 5-point scheme suggested by
Gottlieb and Turbel (G -T), [L4]. We consider the family of schemes in
(2.4) of [2], set its parameters to be o =1/2, 0 =1, and linearize.

The approximation we get for equation (3.1) is

2
m+l m 2
(3.7 G i j=§2 a"ij+;] ’ B ol % A,
2 AfA 1 At
atl = K(X i' 3), a.te = --E(-é' t -3-) s A. = E-x .

It was shown in [2], that (3.8) is stable if and only if
(3.8) A <W2/2,

and if we somewhat sharpen this condition and require
(3.9) r<2/2,

we have dissipativity as well.
Unlike the L -W case, which is of secand order of accuracy both in
time and space, the G-T approximation is of second order of accuracy

in time and fourth order accuracy in space. By this we mean that the

|
|
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truncation error € satisfies 1

(3.10) €= AL[O(ALD) + (At - Ax®) + 0(Ax")] < AL[O(AE?) + 0(AxM)] .

Such schemes - see also the Kreiss-Oliger approximation, [5] — have
advantages when dealing with problems whose solutions have strong space
variations but vary slowly in time. In particular, this concept fits

problems which approach a steady state. These ideas were discussed in [6].

In the G-T case r =2, so we need to specify vo(t), v l(t). Again,

by (2.11) we have

s
m S\(_ JHl m b s
(3.11) WnE (5™ Vi, k=01,
where it is understood that the evaluation of vg precedes vfi.
t=.5 t’l- 'f
.05 .5 L 20 9.42 -3 40 | 1.85-2

.025 | .25 L 80 5.75 -4 | 160 1.6« 3
.05 .5 3 20 2.1k<2 | Lo o k2.2

.025 | .25 3 80 1.78- 3 | 160 192 =3 |

Table 2: G-T results.
Table 2 shows that the results are stable. Here, in analogy with
the previous case,
|2 3
(3.13) "eJ(O,l) " v=§; (v, (%) - u(x,,t)] &x , J=1/bx .

Since G-T 1is of fourth order accuracy in space, it is expected that

utilizing a cubic extrapolation (s = L), will maintain the L-space




-1

accuracy. As shown, results for Ax = .05 and At = .025 are compared

with those for Ax/2 and At/4. Indeed, the error is reduced by a factor

of 16. This ratio is destroyed if we use quadratic extrapolation.
As a final point of rerenence to the figures in both tables we mention

that the norm of the numerical solution was for all times 0 < t< 1,

3
(3.14) ”v”?O,l)E oz v ()7 Bx ~ 0.5, T =1/Ax .

==X

et bl el R b
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